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NOMENCLATURE

ot}
a-0 local speed of sound

free stream speed of sound

exponentizal integral, cee (4.39"
see (4.41)

surface deflection, x < 0
Dewson's integral, see (4.18)

generalizad Dawson's integral, see (4.27) and
Appendix B

see {(4.15) and (4.18)
Heaviside utep function
V=1

=3le factor in exponential flap, see (4.5) and
AR

V/a local Mach numbe-

V./a, free stream Ma:h number

see (3.21) and Appendix A

see {(3.20)

perturbation pressure/free stream density
lowest-crder p -#ssure, see (3.21)
first-order press.re correction, see (3.36)
see (3.36) shrough (3.3%)

see (3.30)

lowest-order solution far Q(a) , see (3.26)

fivst-order correction to Qefu) » se€ {3.33)
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unknown, in dual integral equations, see (3.23)

t time

Viy) shear jayer mean velocity profile

v shear luyer velocity at the wall
w vertical fluid velocity

Wix) downwash function, x < 0, see (2.15)

hinge location of linear flap, see (4.1) and Fig. 5

X,y Carteuian coordinates, see Fig. 1

o Fourier transform variable
2159y see (3.5)

al ,a3 see (7.10) g
8 (1 - M2)1/2
5. (1 - 22
y .57721 Suler's constant i;
3 shear layer correction factor, see (4.34) i
r see {(2.6) and Fig. 2
r. value of T in fre¢ stream, see (2.8) and Fig. 2 3
s shear iayer thickness
5" shear.layer displacement thickness, see (3.47) ,?—
5{xj Dirac delta function §
A 5'/5 , see (4.36) %
€ 2B8/1 ' %
g'{x) see (3.38) %
a(y) shear layer normalized mean temperature profile %
o free _lream density i
s see (3.9)
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see (3.8) and Fig. 4
flap deflection angle, szee (4.1) and (4.5)
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w ' radian freguency of simple harmonic motion
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() denotes Fourier transform amplitude of any variable
(*) denctes ordinary differentiation with respect to y
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Foree sponsorship, the author has developed an integral approach 5
for including the effect of the boundary iayer in the canyenticnal %‘
unsteady aerodynamic analysis. The original cbjective of the pro- g

gram was to develop the thieory to a point where it cculd be used
in the analysis <of supersonic panel flutter. This oblective has

géohlﬁg:éf noise generaf on and/or reflection by a panel sucface

I. INTRODUCTION

In a previous long-range effort {see Ref. 1,2) under Air

been azcomplished. The integral technigue has been suecessfully
iﬁ%egﬁaged into a panel flutfer computer program (Refs: 3,4,5)
under Adr Force and gns& sponcorship. The effect »! the toundary
laver on panel fluttér has teen cajiculated aré‘cOﬁpared with
ex;e rimental results. The agreement is remarkably godd. EE

S

s O

Because of the ﬁucaész of the integral approach in solving
the pagﬁ? flutter problem, a shorter range program was iInitiated
to investigate related a?gLiudt;OBS of the theory. The psrticular

in g zhear layer was a possible source ef applicatien., The traiiing
sdge preblem was a second passibilzty. Our work on the acoustic
#roblem has resulted in a2 revolutionary naw theory of aeradynamic

generation. This work is reported in two published documents
fspe Hefs. £,7). Our final report is zoncerned sclely with the

trziiing edge problem.

5 the author's knowledge, the first work »n the application
{ s=hear layer aerodynamic thecry to 1ifting surface problems is
to Dowell and Ventres (Ref, 8). In a subsequent study, Ventres
B=f, 9) developed the shear layer Kernel function in detgil for
incompressible flow and calculated the effect &f the shear
on the 1ift curve slope and center of pressure of various Ywoe

and three-dimensional airfoils. Ee showed that the 1ift eurve sicge
15 deereased while the center of pres=zure 15 unaffected by the shear
layer. In a related study, Williams {Ref. 1() has develcped a

g=neral approach for solving a gereralized class of singular integr:"

eguations that result when the shear layer is introduced intec th
1

A

aercdynamic theory. More recently, Dowell, Chi and Williars
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{Ref. 11) have been attempting to extend the kernel function con-

cept to unsteady flow by expanding for small frequency about the
stesady~-state solution of Ventres.
The present work is closzely related to the work of Dowell

and Kis co-workers in that we start with the same basic model of
the shear layesr and fecus on the solution of a 1ilting surface

rroblem. as cpposed tc the panel aerodynamic prcblem. Our approach

is somewhat different, however, in that we attempt the development

of an analytic scluticn for a very special airfoil and shear layer
mbde&( Specifically, we treat a semi-infinite airfoil -and replace
the a>tugl shear layer by a flow with constant 7elocity and tempera-
tire thav arse different from the free stream conditions. ‘An approxi-

-mate soluticn is developed with the Wiener-Hopf technique in the

1imit of small shear layer velocity defect. Explicit recults are
given for the case of a linearly deflected flap and an exponential
Tlap. The analytic results should be useful for evaluating our
integral approzch and other approximate schemes for solving kernel
function models.
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IT. 'FORMULATION OF THE 'TRATLING FDGE FrROBLEM

Statement of tthe Probilem

We consider the problem illustrated in Fig. 1. A two-
dimensional flat plate =xtends along the negative axis with a

trailing edge &t the origin. The plate undergoes small oscillations.

The flow is unifiorm subsonic except in .a thin layer of thickness ¢
near the x-axis where the mean welocity is 2 funection of ¥y -only.

The basic problem is to determine the pressure distribution .on the

plate.

The model probilem m2 hawve adopted is .an idealization of the
trailing edge of :an oscillating airfoil. The primavry &aim is fo
determine the effiect of the :shear layer on tThe surface pressure
near the trailing edge. The solution of the corresponding inviscid
problem is known (Ref. 12) and is readily .cbtained with the Wierer-
Hopf technigue. 7TIn the present work we .show how the same technigue
can be used to obtain .an approximate solution for a simple two-layer
model -of the :shear 1layer.

Basic Equations

‘The .equations for the perturbation pressure p -and vertical
wvelocity w .are (Ref. 1) in dimensional form:

% _
Lo DP _ q1v (0 grad p) = 2v" 3% (2,1
.'a;m Dt )
P.“.'. ! EB = 27
o + © 3y 0 (2.2
where
p = —‘%—- perturbation pressure/density
00
2, = free stream sound speed
D .y 42
-Vt

2
)

T




w

/ — — — _—Trailing Edge
-t
Surface Deflection, y=fix)e - , x<O

.4

Fig. 1. Geometry of the Trailing Edge Problem
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V(y) shear layer velocity profile
T, {y)

normalized temperature profile in the
shear layer

(2.33

We assume the motion of the plate to be simple harmonlc in

time (q - g %

oeint in space.

) so that p 2nd w are simple harmonic at every
Furthermore, we Fourier analyze the x dependence

of each :dependent wvarisble.

Thus,

and

= 1 . iax .
qla) = - ;. dx e q{x)
o [
-:L—ux - o
wx) = -———175 f q(a) (2.%)
(2w)

where g is either p or w . Tke eguations for The Fourisr
amplitudes become

. dw .- 2-
3. Y, E w— - - =
itaV + w) Iy iaV'w = 87D
.a.'i = 3 LoV +,_‘9__ w (2.5
= s (2.5)
where
2. 2 (a¥V + w)°
T" =0 - — (2.8)
aZe
Boundary Conditions

In the region outside the shkear layer (sees Fig. 1) we obtain
a single equation for D ; i.e.,

fp_:% =0 (2.7)
ay
P 1/2
wnere > (av_ + m}z )
}‘n = o - (2433
, az
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We require unat the pressure either cGecays exponentially or
correspoads to outgoing {acoustic) waves. Thus,

- o

p - Ae for y -~ a (2.9)

and the bounsiary conditicn is satisiied if we choose the branch cuts
for the complex function T _(a} as shown in Fig. 2. The branch

points o, and a, are

0y =+ A N e (2.10°
- o o h = «©
and
is2, 1.
T_=8_1(a - a;)L’E(a - az)‘fz (2.1%}
s_ = (1-nHl/2 (2.12)

¥or reasons that will become clear later, we z2ssume that w has =z
small positive compiex part so0 that oy is slightly above the rezal
axis and o, is slightly btelow the real axis as indicated in Fig, -.

On the real a2xis we can write

r_=8_la - u.[‘fel ui]‘fz x> a.
© 2 1
- -]
or o < ﬁ2
-y b ]
= - 18 lo - oMl - oS1Y? oY <o <ot (2.3

which results satisiy the recuired boundary conditicn for y - = .

Additionzl boundary conditions in the shear layer are the
following. The pressure must be continucus at 21l points. If the
mean flow properties arg continucus, then ths velocity w is alsc
continuous. If we admit a discontinuiiy in V , then continuity

of particie position recuires that

]

ok
f o+

{(aV., + wiw (aV_ + m}ﬁ+ (2.

“u
i

where the + and - subseripts refer to the points slightly zto
or beiow the ¥y locaticocn of the discontinuity.
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The boundary conditions on the x .axis are as follows:

w(x,0) = W(x) = ¥, %+ 1wf  for x < O (2.15)
p(x,0) = © for x>0 {2.16)

where f(x) 1s the deflection of the plate. Finally, we require
that the pressure tend to zero at the trailing edge of the plate.
Thus, we have invoked a form of the Hutta corndifion.
Comments

The solution of the problem thus formulated is difficult for
zn arbltrary shear layer profile, Mach number, fraquency, ete. Thus,
we consider a simplified problem by choosing a two-step shear profile
a8 Jhown in the next section. We remark that other simplificationms
©¢an 21so be made. For example,; in the Incompressible case we have

e
b =

e e =1

‘éi ,‘d - - 7/ 1;3
| ;{ T° = q w/al (2.173
%-:‘t and ivom {2.5) we find that

é’ %% A S (2.18)
i ,,2"(av“a v =
B az® \?

R &G

3 - B -

§ For a linear velocity profile, the equation for w can be solved
§~3§ exactly in terms of expunential finctien and the pressure follows
g;‘e Ly integration. Recently, Goldstein {Ref. 13) has considered the

% §% compressible problem for which there is z2lso an exact solution for
5_,3' a linear velocity prefile.
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IiT. SOLUTION OF THE TWO-LAYER MODEL

The HReduced Problem

We consider the simplified shear layer shown in Fig. 3. The
veloclity and temperature are assumed to be constant in a layer of

“‘ m ” ”

thickness 6 . Free stream conditions hold for y > 6§ .

In the layer the pressure 5 satisfies the ordinary
differential equation.

B £ T o A
Ll
M

2=
g—ﬁ-- sz = 0 (3.%)
dy =
where 172
- + i
I = [32 - -(-u-'yTw_)_ (3.2) §f,
;i a
%22 a‘ = aze speed of scund in the layer  (3.3)
: The sclution of {3.1) is
f p=ge ¥ sce o0<yce (3.4)
§ where the definition of T 1in the complex a-plane is precisely f
the same as fr T_ (see Fig. 2). We have :
= I=8la -c )1/2(0 - a2
1l 2
- B = (1 - n)2/2
M= YV/a
a, = ==
1 a -V
ay = - =y (3.5
2 a + .5
The velocaty in the layer follows by diffsrentiation of (3.4) and g
ase af (2.5%; i.e.,
9 3
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ZVI(X,O)= W(x), x<O Z pix,0)=0, x>0

Fig. 3.

The Two-Step Shear Layer Medel
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# = 1or(Be” Y - cel)/(av + w) Jeay <8 (3.6)

For y > & , we have (see (2.9))
_ Ty
p = Ae
T
~‘y
1A e ©
v+

(3.7)

w =
The pressure and particle position must L: continuous gt y =¢6 .
Note (2.14).) We tlhus solve for B arnd ¢ 1in terms of A and

finally calculate the ratio

-

C - -278
- = = {’.} 3
) z ce (3.1
where
2 2
re(avy+w)” - I_(aV+w)
o= - = > (3.9
re(av +w)< + I _(aViw)
%% For y = 0 , we get from (3.4} and (3.6)
1 p = (1 + £)B(a)
( ) - .

. S fev e 3o ora - B)B(a) (3.187

] we formally invert this pair of eguations to obtain

3 p(x) = ——1775 f e~10%(1 + £) - B{a) * da (3.21
: (2%) J_
g : 55 - ﬁf et . (1 - 1) . B(a) - da (3.1
, )
' where

gg D = 1 a -~ - 2y

- Bx vV I3 + iw 3,332

| Eee
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These are the basic -equations that we usz to study the
‘trailing edge problem. Tne function 3R{a) 418 the essential
unknown. We have cast the -problzm in the above form to facilitate
application &f the Wiener-Hopf technique. In the complete absence
‘0of ‘a shear layer we have I = 0 and Wiener-Hopf solves the problem
‘exactly as we shall see below.

Application of Wiener-Hopf
£ We apply the boundary conditions on the x-axis (see (2.15) and
(2<16)) to obtain the following pair of dual integral equations:

) T{?Tf_i f e~ 19%(1 4 r)B(adda =0 , x>0 (3.14)
i

[

T

?

;
1 ~lax YR+ 1l DW —
Wj e (1 - £)B(a)da = & bx s x <90 (2.157

)
i

Next, we follow the Jones method of applying the Wiener-Hopf

ii technique (see Ref. 12) to partially symmetrize the integrands in
(3.14) and (3.15). Pirst, we replace x by x + & in (3.14),
§§‘ multiply by "scme functicn” Nl(E) and integrate from 0 to « . i

We get

BT 1 - _=iax " z
) e N (a){1 + £)B(a)da = O x>0 (3.16) 2
L (2m)172 f B ’
where ‘d 3

N (a) = I e'iuxﬂl(x)dx (3.17%

A :

an¢d N_(a) must be analytic in "some" lower half of the complex i
plane. Similarly, we replace x by x - £ in (3.15), multiply
by "some function" NZ(E) and integrate to obtain

12
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o

1
i -
i

1 -iax ;
- e N . (a)l(1 - £)B(alda
(2,;)172 f +

-G
K

. = l DW x f
% f NZ(F,)[@ 5n x_gdg s, X <0 (3.18)
0 :
7 where i
: - ,
- - iax
.§ N, (a) f e Hl(;x)dx ) (3.19) 7
A ;
g and N+(a) is analytic in "some" upper half of the complex
. plane.
_% Nezt, we construct the functions Nl(x) and Nz(x) by
¢ choosing
H N (a) = 1/(a - ul)l/2
i N,(a) = 1/(a - a2)1/2 (3.20) i

where ay and a, are the branch points of the function T[{a)}
(see (3.5) and Fig. 2). Note that N _{a) 1is analytic in the
lower half plane (Im a < Im “1) and N, (a) 1s analytic in the
upper half plane (Im a > Im °2)' It is essential for the analytlce
continuation used in the Wiener-Hopf technique that these twoc halfl
planes overlap. This was the reason for assuming a small positive i
complex part of w . We also remark that the particular choice for
N _(a) and N, (a) establishes the cnaracter of the pressure near
the trailing edge. We shall see that p(x) ¢tends to zero as v=x
for % =+ 0° in accordance with the Kutta condition.

e,

Dk g i . . o i o

Wwith (3.20) the functions Nl(x) and Nz(x) are easily
evaluated (see Appendix A). We get

ia,x+in/l
Nl(x) = (n)'l/2 e 1!

ﬁz(x) = (ax) s x>0 (3.21)

13




are zero for x < 0 .
la.x
Finally, we multiply (3.16) by e * and differentiate
i

with respect to x . Our dual integral equations (3.154) and (3.15]

Hoth Nl and N2

are reduced to the following:

PRTRAT W i 4 Oy ey
by GER OB D BB

o0
i 7 YE f e”1%%(1 + £)Qa)da = 0, x> U (3.22)
{ (2m) v
§ -
§: 1 -fox . _ ¢y R
E - ——]:75] e (1 £)@(a)da
E ) (27) Yo 3
= 9 - E‘E
where §
Q(a) = (a - a,}lfzs(u) (3.243 1
Once Q(a) is known, the wall pressure is calculated with
3
o -1 £)Q . s nc 5
{2n)™ {a - a,)" 1
b 1 :
= Exact Inviscid Solution %
%é In the absence of any shear defect, we have L = U and the §
- pair (3.22) and (3.23) yizid the exact soiution of the problem; {.e., %
1 1 lax - 1 . [Dw a as 5
g Q (a) = —75 e ax » Iz N \E)'-{] 3f £, 240 i
: where 8 =8_  and 6 =1 . For the surface pressure we get
3 Q (o)
- 1 ~lax (o} ; - 1
Polx) = —=75 f e . —~rsda , x <0 (2.7

14
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We can reduce these results further wiith the sonvoiuiion

integral. TFor (3%.27) we get
c

e FIFC i

REm o

"
nY
[ ]

®
p,(x} = R, (£ - x)Q (g)ag s
X

. . ram—
o g - d v T

¥y
"
Lo

Q;(E) = ;—2—-317-,;'[ e-iang(u)éu ,
AEn [

Mow substitute (3.26) into {(3.29) and inveri the order .7 inte-

gration to get

|

3
H
H
S
]
-5
5
H
32
H

o
. 1 v 4 D‘ > £ I Tt |
Qo(x) = — fv2(§) [—55] ag s, X - U {3.36;
8e o X-£

Thus, the exact pressure on the surface become ;
§
o b
i 3 i
;l 1 o owi . i
p (x) = % N,{s - x)ds N_{g} = af £3.31) i
O E 1 < D”I.JE"?; i
0
-

where N, and N2 are defined by (3.21).

-

. . " - .
€ e ettt AR R R At

For any specific downwash distributicon, Wixi , the salculatiosn
of po(x) has been reduced to a double quadratwrs. =7 _inz.1er

specific examples in the subsequent secticrn,
I An Integral Equation for Q(a)

The obstacle that pronibits the exact sclurt.or Jor iz Iin A
I £3.22) ané {(3.23) is the ccmplex functien Iia; . We -ar dizFuiss :
our difficulty somewhat by transposing the fwa terms frar - rnrain L §
4
lﬁ to the right-hand side of the eguation and formalliy irvertins., Th i
&
result is a singular integral equation for the :nkr2sn .20 5 2.7, .
3 £

1 tla’)atia’™

Qa) = Q@ _(a) - &+ —~— Ayt 3,303
-
15
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where Qo(a) is given by (3.30) and the integral is a standard
Hilbert transform (Cauchy principal value integral).

Since we still do not know Q(a) , we have only reduced two
integral equations to one with the last trick. However, the form
of (3.28) suggests that we might iterate for Q. If EI(a) 1is in
some sense small, we can expect to obtain useful results. We post-
pone the investigation of I for a moment and formally derive a
first-order result. We have to first order in I

Q =9 +Q
and 3 Q. (a”)
; x(uo Q a' -
Q“%?f 0 da” (3.333
Y e’ ~a '

Next, we evaluate the first-order pressure with (3.25). ¥We have

-

(1+2)Q = (1+£)Q, +Q #0(z% (3.3%
and we write the rressure in the form of a cenvolution integral.
Thus, - ‘

S’l(x) =f P(E)Nl(ﬁ - x)d§ (5.352
< x
where -
F) 1 “'iux ” By
P(x) = _'_17?[ e [(1. + £)Q + Q7 Jda (3.36;
(2m)* < J ° ]
Consider
i
- 1 -iax
P7{x) = -——-U-ﬁf e Q" (a)da
(2w) d.,.cn
o d o
= 1 ~N\ Y rd 1 e-:ax
t;;mf EHa")q,(a")da” - 1'-?3[ e
-— -
o
= iﬁ“—ﬁﬁ%f e"iaxi(a)Q{u}da (3.3
(2%)

-l
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"Thus, -
P(x) = ——-liﬁf e 10X 4 21)Q (o)da X <@
(27 ‘
=0 . x >0 (3.38)
and
py{x) = p (%) + p~(x) s x <0 (3.39)

where 'po(x) is given by (3 31) and
0

p7(x) = f PT(EIN, (€ - x)dE , x <0 (3.40;
X
with
2

) = : -Jax 3
Po(x) - Wf £ .Et(u)Qo;(a«),da

= ,_(._E_fmmei(.g:)‘z*;(x - £)dE x < € (3.41)
Hf ) :“!\ -

*
where Q_ is defined by (3.30) and

* 1 -iax
I (x) = "““j?‘.{. e Z(a)da X <0 (3.42)
(2m)t/2 v ’

The first-order pressure is zero for x > 0 and providing P(x) iz
regular at the origin, ‘pl(x) should vanish for x - 0  at the

trailing edge.

Analysis of I

The first-order result will be useful to study the etffect of
the shear layer on the trailing edge pressure providing the

correction is bounded. The magnitude of the correction is determin--

completely by the magnitude of £ . Ve turn now to a brief analysic
)

of I that we rewrite here for convenience (see (3.8) and (3.9)1,
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Similarly, we find that

e s w23 it s T s T

{3.43)

g = -
IG;(aa’X{n*i-u:D'z 4+ il'fm:(:m’\“l'm:)2
where
T, = 8 (s~ a7 )l/zi(a - apl/2 (3.44)
with
= W = _ )
N TEF=N e2 2+ V
[ J - W ® = - W | f—.ilg
T -7, "2 % E T, (3.4
We first examine the relative magnitude of the branch points for the
case .0of an adiabatic wall; i.e.,
a? e Iz 2 v =22 s X222 (3.46)
and
aza i+ X3t vl - vBvR)) (3.47)
Thus,
- o ’ v Yy - v
a-v-(am-vw)[ _Ml- ){1+ Id(1+ )}]
and
S SURETILN SR
% TEFCW “1[1’(1’ 1-N{1+ Ytn (o }
<oy (z.b8
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It follows by inspection of (3.42) that

\ Y = A .
‘0(01.2) = =1 0(&1’2; +1

"

For o + + = the parameter o¢ becomes indepenéant of =«

gove - BV’

o - for o] -~ = (3.51)
\ BGVE + BUVE
and

I~ oé’ggélal (3.52)

We also remark that for the steady-state case the expression
(3.51) is valid for all o .

The function I 4is real for o > a; or o < a, . It is
bounded uniformly on the real axis and never exceeds unity in
absolute value (see Fig. 4). In the steady state it 1s bounded by
0 . Yor low Mach number, we have approximately

1 - ve/v2 .
o= 3.53)
.+ VN2
and
*
§ v o= 1 (3.54)

TElov T eI
*
where 6 is the displacement thickness and N 1is the index of a
power law velocity profile. Thus

v 1 _ N I
V: =1-53 T = 77T (3.5%3; i
and %
2N + 1
o = — !
2N° + 2N + 1

= .13 for N = 7 (3.58:
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For a steady-state deflection o 1is of the order of the boundary
layer velocity defect, and we expect the iteration scheme to work.
A rigorous proof could be developed.

Since T 1s only bounded by unity in the unsteady case, we
can not prove a priori that the iteration scheme will work. However,
it seems plausible that 1t will, at least for sufficiently low
frequency. The question is whether we can ultimately calculate
results for large enough frequency to see any significant nonsteady
behavior near the trailing edge. We remark finally that when I =1
the two-step shear layer has unstable eigensolutions and when I = -
the wake has unstable eigensolutions. This fact may present come
complications in obtaining a unique solution of the unsteady lifting
surface problem. Further analysis of this important point shouid be
carried out before we imbark on a numerical solution of the unsteady
problem.

T s e R

3
1,




T T A T

1V. APPLICATIONS

We 1llustrate the foregeing theory with two examples. First,
we calculate the lowsst-order solution for the linear flap at zeroc
frequency. Second, we consider an cscillating exponential fliap for
which we calculate lowest- and first-order results.

The Steady State Linsar Flap

A A WMW.MWWWWMMMWMW S

Consider the stuady state deflected fiap shown in Fig. 5. The
surface deflection is given ty

f(x) = - p(x - X JH(x - xy) (4.1)
where H(x) is the Heaviside step function. The downwash and

surface acceleration are

. b 1

i Gmq N NN DN A DR B
4y

i

W=Vl = «¢VH(x - xh) {(8.2)
and
L —6V35(x - x,) (4.3)

wherse 6(x) 1s the Dirac delta function. It is understood that x
is negative in all of the subsequent formulas.

Tne lowest-order surface pressure is obtained with (3.31). We

* i
Aot

r =

1 DW
po(x) Ty Nl(s - x)dsf }{2(5)[1)—5]5-;5
b °

it |

H 5 -
B e = m - A 1 - =
= g6 N, (s - xjds N, (E)8(s —B-xp)dE
3 x o
)
g2
= - 2; les ~ x}ﬁg(s - xh)ds
Max(x, xp)
)
e
.o
m3e /s - X V3 = 1y

= - 293*2 1n [(—x)1’2 + {-Xh}‘/zj {g .4
- :':I - d v 79 L Y L3
n 36 [x - 5 |* 2
22




The Linear Flap

Fig. 5.
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With 8 =8_ arnd € = 1 the last result is the exact solution of
the linear deflected flap in a nonshear flow. The pressure is
plotted in Fig. 6.

Remarks

We note several asymptotic resuits. First, the pressure tends
to zero as (x/xh)l/z at the trailing edge and has a logrithmic
singularity at the hinge line in accordance with known results for
the finite zirfoll (see Ref. 13, e.g.). Also, the pressure tends
to zero as (Jth/:x)l/2 for x + -=» ., This means that the total 1ift
on the plate is noncalculable. In fact, the 1ift on any length L
of the trailing edge tends to infinity as /L for L + « . This
is in agreement with the known exact solution (Ref. 15} for the
1ift on a finite airfoill with chord ¢ at zero angle of attack, but
with 2 finite flap deflection. The total 1ift tends to infinity as
/¢ . We shall discuss the implication of this singular result in
more detall after we consider the next example.

The Exponential Flap (Zero Order)

The linear flap is a simple example of the lowest-order steady
state solution. However, the algebra becomec very tedious when
nigher-order or even unsteady results are scught. For this reason,

we consider the unsteady exponential flzp iliustrated in Fig. 7. The
flap dellecticon mode is assumed to be exponential; i.e.,

£(x) = - sre™*t (%.5)
s¢ that
£ / .

W= %;- = —aV(1 - 1k)eXt (4.6)
and

‘i

g%‘[d -2a- 1x) 2/t (4.7
where

k = wf/V , reduced freguency

and ¢ 1is an effective flap angle; i.e. ¢ = -f°{0)
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Fig. 7. The -Exponential Flap
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OQur next step is to calculate the function Qo(x) with (3.29)

and Qo(u) with (3.26). We have

¥ :l’—- P-!.‘ F
Q(x) = 35 “2(5)[pn_.x_E df
[o]

2 2
Y ;é;ik) ex/z.[P e‘g/‘uz(g)dg
o

With Nz(x) given by (3.21), we get

«© o
£/ f gy o T gLt/
T5CENL(R)AE = e 4 =
¢ p(8346 /7E 1+ ta.1)7°
(6] fo) 2
so that
where
o . eP0-ng?t et
se(1+1a21)1/‘(2n)1’2

The complex function Qoiu) foliows from {(3.26}:
0

1 lax *
Q (a) -——éhjﬁg.{‘ e Q (x)dx

_ C
T 1 + iak

Thus, o 1s a simple pole at a = i/f .

The lowes' -. ‘der pressure follows f{rom (3.28). We get

27

(4.8)

(4.9)

(4.109

(4.11)

(4.12)
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o
Po(x) =f Nl(E - X)Q;(E,)di

x 3
4
‘ (1+4ia.2)s
- c/% eiu/u . oX/E e 1 ds {(4.13)
(] Vs

The integral in (4.13) can be expressed in several different forms
with the complex error function. However, the simplest form for
computational purposes is to write the real and imacinery parts out
separately. Thus, we get after substituting for ¢ .

2 2
oV (1 - ik) /? [ 1/?] ;
p (x) = - = Gl(-x/2) (4.14)
where z
2 (1+1a,2)t°
G(z) = e~% e dt (4.15)
(V)
z
and -22 r t2 2
ReG(z) = e e cos (a.£t7)dt
o B3
()
z
-z i £2 2
ImG(z) = e J e’ sin (a,f2t7)dt (4.16)
A 1

The oscillating exponential flap can thus be solved com. eftely in
lowest order and expressed in terms of simple functions.

It is interesting tec consider the steady state exponential

flap. We have

:2 ) 1
o (x) = - & /2 ol(yl/2 (4.17)
G Re 1
where z
2 3
F(z) = e~ 2 e dt (4.18)
(o]

1s Dawson's integral (see Ref. 15). The pressure profile corres-
ponding to (4.18) is plotted in Fig, B. The pressure tends to zero
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i as J/=x/T a2 x » 0” , and tends to zero as v=Z/x for

ng X + «» , Thus, the total 1ift is again infinite, a result that

¥ does not seem to depend upon the detalls of fhe surface deflection.
The pressure has a iminimum as indicated in Fig. 8. Thus

gg? {Min poi = 541 v = §~" g
& at .

i &

.-

First-Order Exponential Flap (Steady State)

Because of the simplicity of the function QG(a) , We can
derive first-order results for the exponential flap in ste.dy stzte.
In principal, the unsteady first-order result can be calculated but
the detalils are extremely tedious. The pertinent formulas of
Section III are summarized below:

pl(x) = p,(x) + p7(x)

0
p~(x) =f PE(EIN, (§ - x3d
x o
P‘(X) = 2 f Q*(C)ixg‘z g)dg
—73 £ -
(emt/e J °
L
£ (x) = '-—é—7- e 1%%5 (4)da (B o233 2%
bl e . - A7 <z
(2my1/2 J 3
Where §
Ea) = ce-dpsici ; w =10 (48.233 §§
&ne
sev2 - 5 v° )
- = 5 «=C (4.22% L
ﬁ@?m * BNV' §
Again, 1t is understood that x < 0 in all of the formulas (4.20}. %:
30 :
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‘The reason for the simplicity of the :steady state case is
that « , defined by (%4.22), is independent of « . 'Thus, we can
evaluate each o1 the functions needed in the series of convolution
integrals in (4.20). First, we .calculate

i) = f ctax  -2B8lal o
' <2n)
20 1 -2B88q
B meme—n—— | e «C0S (OX
(2myL/? f
wo
B | LoB8 4.23)

«2“)1/2 1 + ﬂBé 2

We subsiitute this result together with (4.10) into the third
formula of (4.20) to cbtain

e 8C.538 ' o572 4
P(x) = = f >
(2m)/2 . g L (x-£)° + 14p°s°

6CoBS eX/y« ,’ ds (h .ol )

T em? 7 | s? o+ u372/22
x/%
The last result can be expressed in terms of exponential integrals,
but it is more convenient to leave it in the simple integral form

for the moment.

Finally, we substitute (4.24) together with the definition of

Ny (see (3.22)) into the expression for p“(x} . We get
. 0
p”(x) =f P’(é‘,)Nl(E - X)4g
X
- 8ot f —2-——,—3,——5 (4.25)
Y225 x)l 2 - LB5§%/0




r zome manipulzcion of the double integral

e = 286 -~
pTix) = %5— = _UW[K—<—) 4] (4.26)
where 2
_22
F(Z,E) = e e —5—-? (ll,27)

o]

The final expression for the Tirst-order pressure is

2 & 1/2 1/2
: _ _29V— X 288
i p,(x) = - /‘zae{ [ (- 2) ]+ 201{- %) }} (4.28)

The function F(z,e) 1s 2 generalization of Dawson's integral; i.e.,

; ; Lim F(z,e) = Fl{z) (4.29)
e-90
?% where F(z) is given by (4.18). Thus we can also write (4.28) in
the form
H 2 1/2
i p(x) = - 2L fq . 20)?[( x) ]
/g6 -
. 1/2
: *
L il ~20F [(. N, 2.3_6.]} (4.30)
— where
5, z o
3} 2 2
F'(z,e) = e % tar - £ S a (4.31)
- : ’* € T >, .29 i
b 0 ti-z

Asymptoctic Results

sy

re are two independent parameters in our first-order shear
The basic expansion parameter is ¢ and terms of

=
L]

h
laysr re

rf

st
order 02 nave been neglected. Thls parameter 1s truly a property
of the shear layer as we have shown in Section 1II (see (3.53) to
(3.56)). The second parameter is 286/%2 and 1t 1s the ratio of the

shear layer thickness to the length scale of the flap. We can vary

N e

S
[-fnae
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this parameter independentiy of o . For example, when &/ - 0

the pressure is given by the first term in (4.30); 1i.e.,

2 wA\L/ 2
Lim p (x) = - 2L (1 + 20)?[“ %) ] (4.32
Y180
5/2-0

In the complete absence of a shear layer, we have

2072 NV
p (%) = - F[K— ) (4.33
s,
so that
- By(x) By R )
Y = EETET = §—>;§ (1 + 20) (3.34;

The importance of the zactor 20 1is now clear. Without this term
(4.32) would tell us that the lowest-order pressure is to be
ocbtained by replacing the entire flow by & uniforn flow with the
velocity a2nd temperature (or density) of the shear layer. This is

&z gross over-correction of the inviscid result and must not be ussd.
The correct factor to use is Yy given by (4.34).

2
For low Mach number M_ << 1 we can express Y 1in terms of
the shear layer velocity defect; i.e.,

*
_ 8 v
B=g= - (4.35;
Then 5 2 _ 2
vy 1+ 2f
v v2 v
- (- AﬁaE_+ A2 ~ A; J
1 -4+ 8%/2
"~ 9 ;\~
= [1 - 28 + 0(8%)J[1 + 28 + gra®;1]
=1 - 0(a%) (b, 2
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l For &/8 = 0(1) we must in general use (4.30) to calculate

é the shear layer correction. For small §&§/2 we can estimate the

‘ order of the correction with the asymptotic results derived in
Appendix B. We have

|

l

z
-n
F'(/E,e) lé‘ f e G(nge) dn (4.37)
¥Z - N

B L T e P T P

-S
G(n,e)-‘-%f lo-e  as
s + €
-n
- Liant E
=1 - = tan n
1 -i¢ . ie )
- m[e El(-n - ig) - e El(-n + ieﬂ (4.38)
where
e~far . —
El(z) = T larg z| < = (4.39)
z
For € -+ 0 we have further

SN

F*(/E,s) =§— r dn { [ln - E (n)]
- Vz-n (n"+e )

G~ 0
(L.b0)
where
e-t
Ei(n) = - = dat (4.41)
n
In the vicinity of the trailing edge, we get
# -
F (Vz,e) = % (ln % + 1 - \) V2 (4.42)
e+ 0
z -0

where vy = ,57721 1is Euler's constant. Thus, the first-order
pressure tends to zero as J-x near the trailing edge. However,
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the magnitude of the correction is 0(e 1n l/g) where
£ = 286/¢ . We conclude that any expansion of the shear layer
solution in powers of & must fail in the viecinity of the

railing edge.

For large 2z it is also shown in Appendix B that F*(/E,E)
decays like (1/23/2) . Thus, the pressure at large distances
from the trziling edge is given by the lowest-order result with
the multiplicative correction discussed above (see (4.32)).

The Paradox of Infinite Lift - A Suggested Experiment

We have seen that in the absence of a shear layer the total
1ift on any section of the trailing edge of length L grows as
vI . This result is in complete agreement with the exact solution
for a finite length flapped airfoil (see Ref. 14, e.g.). One can
argue that in reality this result cannot be true. The total 1ift
must either reach a maximum or decay as the airfoil chord is in-
sed without bound for fixed flap geometry. The flap
eventuaily becomes totally immersed in the shear layer and must
y ineffective in producing 1ift. Thus, the "steady

flan~ped zirioil" offers a means for investigating the role of a
1 4

0
(D

f“‘
h
(#£]
0
b1
[t
ot
(o]
ot
[V
[
=t

n limiting the 1ift.

The paradox could perhaps be resolved with a very simple
t. A two-dimensional flat plate airfoil could be fitted

with a flap of fixed chord. The chord of the airfoil section
forward of the flap could be varied while the total steady state
1ify is measured. A plot of In(Lift) versus 1In{c/&) would be
expected to appear something like that shown In Fig. 9. The ratio
/% where the 1ift starts to depart from the no-shear result
‘straight line vith slope 1/2 in Fig. 9) would be a measure of the

211" of shear layer thickness to flap cherd., With more
4 theory, this pcint could also be calculated. The two-step
T iel Jces not appear to have the potential for describing the
rzticn because the velocity at the surface of the zirfoil can-

1
ry
4/

3

reduced beleow a Tixed value as the shear layer thickness is
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No shear layer
Slope = 172
’——~\\
~
Lo (Lif1) ~o

Exp~cted maximum

with finite shear layer

- Mo (c/2)

Fig. 9. Suggested Airfoll Experiment
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increased. A linear velocity profile or a power law profile
would be more realistic, although the Wiener-Hopf analysis may
become intractable.

The Unsteady Trailing Edge

To continue the investigation of the shear layer effect on the
unsteady trailing edge 1ift, it would be desirable to carry out the
first-order analysis for the two-layer model. The essential and
nontrivial step in the analysis is to calculate the inverse Fouriler
transform of the shear layer function I(a) given by {3.8) and
(3.9). Given t*(x) the first-orcer pressure is a matter of
integration {see (3.35) through (3.38)). These results would be
of immense value in assessing the role of the shear layer on the
unsteady 1lift.
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V. CONCLUSIONS

We have investigated the problem of an cscillating trailing
edge that is immersed in & two~-dimensional subsconic shear flow.
The idezl problem wherein the shear layer is replaced by a two-step
model is given detzlied consideration. An approximate solution is
developed to first order in the shear layer velocity defect (ratio
of displacement thickness tc boundary layer thickness) and is valid
for arbitrary length scale of the tralling edge deflection.

The general soluticn is applied to calculate the steady state
1ift on a linearly deflected flap and the unsteady 1ift on an
exponentiail flap. The lztter example is developed fto first order
for the steady state. The rpnciple conclusions of cur analysis
are as follows:

1. The lowesst-order steady state 1ift distributicn tends to
the sgquares root of the distance from the traill

1 distance and as the reciprceal square root
distance for large distance. The linear f
eak logarithmic singularity irp 1ift a2t the hinge iins
in accordanze with known results.

ailing edge section of length L

PEEY

a
teccomes infinite like VL as 1§ 1is increz<ed without
1

5 bound. This result is in agreement with tre thin zirfeil
.
solution for 2 finate length flapped zirfoll.

st-orcer 1lift on the steady exponential flap is
ail. It is shown that the trailing edge
o a
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APPENDIX A
EVALUATIUN OF Nl(x) AND N2(x)

Consider the integral definition of Nl(x) ;3 1.e.,

-iag 1
e N,(g)dE = (A.1)

(o]

where the complex function (a - 01)1/2 is defined by the branch
cut shown in the following sketch:

__( \
Ima
%1
P = 2
Multiply (A.1) by eiax and integrate cver all x to get
L
iax
1 e .
N, (x) = 5= f da tA, ot
1 2n 1/2
g fa- al)

Since (a - 01)1/2 is analytic in the lower half plane, the
function Nl(x) is zero for negative x . For x > 0 we use
+ha contour shown in the above sketch to evaluate the integral.
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We have

1 e da
Nl(x) = -3 (A.3)

Let

(A1)

Then

1alx+1ﬂ/u

= & x >0 (A-S)
/mx

A AR

The evaluation of Ne(x) is similar to N,(x) except that
the contour in the complex o plane must be closed around the §§
branch cut from a, into the lower-half plane. We get i

[

) e-iax

-0 (G - 0.2)

N
E ]

-iazx-in/k

e
YTX
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APPENDIX B
#
ASYMPTOTIC ANALYSIS OF F (z,e€)

Consider the function

Z
-n
Fr(/Ee =3 [ &Hme g, (B.1)
o VM
1 - S
G(n,e) = % T_e-? ds (B.2)
J, s< te

*
In general, F must be evaluated numerically. We consider below
the asymptotic behavior as ¢ - 0 with 2z = 0(1) . First, we
evaluate G(n,e) in terms of known functions. We have

G(n,e) = Go(n,e) - Gl(n,e) (B.3)
where
€ ds
Go(n.e) = fm (B.4)
-n
6, (n,€) = & e as (B.5)
wme) =5 ) Fr e &
-n

The first integral 1s easily evaluated in terms of the arc tangent.
We get

1

= Lean
Go(ﬂ.e) 1l - ™ tan (8.6}

S3fm

To evaluate the second integral we expand the integrand by partial
fractions and translate the dummy varisble of integration in each
part. We get
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(-}
G,(n,e) = 1 e 31— - 1 ) ds
1'7? %1 s=1 s+l
-n
o™ 90
-t -t
e 2 [o—1€ e ie e
m(e f < dt - e f t dt)
-n=i¢ -nt+ic ’
= E%f[e'ieEl(-n - 1¢g) =~ eieﬁl{-n + ie)] (B.7)
and
1 -1 E - )
G(n,e) = 1 - $ tan T - Gl("") (B.2)

where the exponential integral is defined by

-t
Eliz)\s f—e-{,’—-—dt . jarg 21 < n (B.9)

Z

Tc obtain the easymptotic expansion of F§ for small € we
must first develop a2 unifermly valid expansion of G{n,e) . We
use the method of matched asymptotic expansion to accamplish this
-ask. First, we expand G(n,e) 1ir the 1imit € - 0 and
n = 0(3) . Then we 2xpand G for ¢ + 0 and n = 0{e¢) . The
tws expansions are ther zhown to have a common domain of validity
by matching, Finally, we form an additive composite expansicn
with the two results.

Expand G(n,e) for € + 0 , n =0){1)

We use knowWn properties of the exponential integral to carry
out the follewing program (see Ref. 15, p. 226). Pirst, we

expand E1 as froliows:
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1" e i1
= -—-n ———-7—1 T dt + El(-n + 10)

n
= -E;(n) F 47 = e %— + 0(e2)

(B.10)

The last result is vaiid for all n greater than or equal 0(1) .
Now substitute the last result into (B.7) and combine the result

with (B.8) to get

n
Lin G(n,e) = - % [Ei(n) + 3’-—%—3--]'* 0(52)
e~+0
n>0(1}

Expand &(n,e) for e -0, n = 0(c)

For n and € both small we can write
El(-n r Je) = -y - ln(-n ¢ i€) -n = ic + 0(82)
where vy = 57721 is Euler's ccnstant, and

2
in{-n = te) = In{n~ + 52)1/2 t in t i tan %

We use (B.12) and (8.13) ir (B.7) and (B.§) to get

”~

| &3
a

)

L]

S oo
. : :
R v S 8

(4]

'
J A

which result is reguiar near n = 0 but is of 0(e 1in ¢)

Uniform Expansicn of G(n,c)

2 7/
gin,e’ = - ;E‘- [}_n(r;d + e“}l'g + Yy - l] + 0(&2)

(B.11}

(B.12)

Now we expand {B.1l) for small n and (B.14) for large n .

We get

by
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Lim flLlam G(n,;;
n~0 -0 ,
n>0(1)

Lim Jiim G(n,sﬁ
n-0(1) -0 ‘
\ n= 0(e)

= - % (Inn +y-1) (B.16)

The last two resulis are identical so that the two asymptotic

expansions have a zommen domain of validity. We form a uniformly
valid composite expansion by adding (B.11) and (B.1l4) and sub-
tracting the part they have in common (either (B.15) or (B.16)).

‘The final result is

Lim G(n,e} = -

| - [ 0y 4 -
3 : K -

All n (B,

ER

3]
}-I
o~
=3
3
=
!
| ad
ja ]
-y
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Finally, we suustiture (B.27) inte (B.1) to obtain

Lim F (Vz,e) = + =—

2n (
e~0 al
-1
P (2.18
n
The last resulf i1g velzd for all 2z and in general must be

evaluated numer2-zlly. Uriortunately, the integral is not sub-
tantially mo cimple than the original integral (B.l) that is

¥
Ye conciude cur analysis of F with results for small and
large 3z . For =z = 0 we use the limit value of tune expressicn

3
in curly braces in ‘B 1%7). Ve get
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The functional

We integrate by paris ir {

~
-7
(.3 -
- - .

#
F(/Z,e) - ——

Thus, we see that
contrast to Dawson's
since we have alrezdy n

is positive and the am 1srvude iz of
the contribution tc the inisgral irim
of 0(e/z
in the approximate feorm

- 3
(Vz,e) = ——
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